Indie-spb.ru

Патриарший проект indie-spb.ru

Метки: Интегральная микросхема технология изготовления, интегральная микросхема рисунок, интегральная микросхема харьков, интегральная микросхема и, интегральная микросхема степень интеграции.

Современные интегральные микросхемы, предназначенные для поверхностного монтажа

Интегра́льная (микро)схе́ма (ИС, ИМС, м/сх, англ. integrated circuit, IC, microcircuit), чип, микрочи́п (англ. microchip, silicon chip, chip — тонкая пластинка — первоначально термин относился к пластинке кристалла микросхемы) — микроэлектронное устройство — электронная схема произвольной сложности (кристалл), изготовленная на полупроводниковой подложке (пластине или плёнке) и помещённая в неразборный корпус, или без такового, в случае вхождения в состав микросборки[1].

Бо́льшая часть микросхем изготавливается в корпусах для поверхностного монтажа.

Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС, чипом) — ИС, заключённую в корпус. В то же время выражение чип-компоненты означает «компоненты для поверхностного монтажа» (в отличие от компонентов для пайки в отверстия на плате).

Содержание

История

Подробное рассмотрение темы: Изобретение интегральной схемы

7 мая 1952 года британский радиотехник Джеффри Даммер (англ.)русск. впервые выдвинул идею интеграции множества стандартных электронных компонентов в монолитном кристалле полупроводника, а год спустя Харвик Джонсон подал первую в истории патентную заявку на прототип интегральной схемы (ИС) . Реализация этих предложений в те годы не могла состояться из-за недостаточного развития технологий.

В конце 1958 года и в первой половине 1959 года в полупроводниковой промышленности состоялся прорыв. Три человека, представлявшие три частные американские корпорации, решили три фундаментальные проблемы, препятствовавшие созданию интегральных схем. Джек Килби из Texas Instruments запатентовал принцип интеграции, создал первые, несовершенные, прототипы ИС и довёл их до серийного выпуска . Курт Леговец из Sprague Electric Company изобрёл способ электрической изоляции компонентов, сформированых на одном кристалле полупроводника (изоляцию p-n-переходом (англ.)русск.). Роберт Нойс из Fairchild Semiconductor изобрёл способ электрического соединения компонентов ИС (металлизацию алюминием) и предложил усовершенствованный вариант изоляции компонентов на базе новейшей планарной технологии Жана Эрни (англ.)русск.. 27 сентября 1960 года группа Джея Ласта (англ.)русск. создала на Fairchild Semiconductor первую работоспособную полупроводниковую ИС по идеям Нойса и Эрни. Texas Instruments, владевшая патентом на изобретение Килби, развязала против конкурентов патентную войну, завершившуюся в 1966 году мировым соглашением о перекрёстном лицензировании технологий.

Ранние логические ИС упомянутых серий строились буквально из стандартных компонентов, размеры и конфигурации которых были заданы технологическим процессом. Схемотехники, проектировавшие логические ИС конкретного семейства, оперировали одними и теми же типовыми диодами и транзисторами. В 1961—1962 парадигму проектирования сломал ведущий разработчик Sylvania Том Лонго, впервые использовав в одной ИС различные конфигурации транзисторов в зависимости от их функций в схеме. В конце 1962 Sylvania выпустила в продажу первое семейство разработаной Лонго транзисторно-транзисторной логики (ТТЛ) — исторически первый тип интегральной логики, сумевший надолго закрепиться на рынке. В аналоговой схемотехнике прорыв подобного уровня совершил в 1964—1965 годах разработчик операционных усилителей Fairchild Боб Видлар.

Первая в СССР полупроводниковая интегральная микросхема была создана на основе планарной технологии, разработанной в начале 1960 года в НИИ-35 (затем переименован в НИИ «Пульсар») коллективом, который в дальнейшем был переведён в НИИМЭ («Микрон»). Создание первой отечественной кремниевой интегральной схемы было сконцентрировано на разработке и производстве с военной приёмкой серии интегральных кремниевых схем ТС-100 (37 элементов — эквивалент схемотехнической сложности триггера, аналога американских ИС серии SN-51 фирмы Texas Instruments). Образцы-прототипы и производственные образцы кремниевых интегральных схем для воспроизводства были получены из США. Работы проводились в НИИ-35 (директор Трутко) и Фрязинским полупроводниковым заводом (директор Колмогоров) по оборонному заказу для использования в автономном высотомере системы наведения баллистической ракеты. Разработка включала шесть типовых интегральных кремниевых планарных схем серии ТС-100 и с организацией опытного производства заняла в НИИ-35 три года (с 1962 по 1965 год). Ещё два года ушло на освоение заводского производства с военной приёмкой во Фрязино (1967 год)[2].

Уровни проектирования

В настоящее время большая часть интегральных схем проектируется при помощи специализированных САПР, которые позволяют автоматизировать и значительно ускорить производственные процессы, например, получение топологических фотошаблонов.

Классификация

Степень интеграции

В зависимости от степени интеграции применяются следующие названия интегральных схем:

  • малая интегральная схема (МИС) — до 100 элементов в кристалле,
  • средняя интегральная схема (СИС) — до 1000 элементов в кристалле,
  • большая интегральная схема (БИС) — до 10000 элементов в кристалле,
  • сверхбольшая интегральная схема (СБИС) — более 10 тысяч элементов в кристалле.

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) — до 1 миллиарда элементов в кристалле и гигабольшая интегральная схема (ГБИС) — более 1 миллиарда элементов в кристалле, но в настоящее время название УБИС и ГБИС практически не используется (например, последние версии процессоров Itanium, 9300 Tukwila, содержат два миллиарда транзисторов), и все схемы с числом элементов, превышающим 10 000, относят к классу СБИС.

Технология изготовления

Гибридная микросборка STK403-090 извлеченная из корпуса
  • Полупроводниковая микросхема — все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия, оксид гафния).
  • Плёночная интегральная микросхема — все элементы и межэлементные соединения выполнены в виде плёнок:
    • толстоплёночная интегральная схема;
    • тонкоплёночная интегральная схема.
  • Гибридная микросхема (также микросборка) — кроме полупроводникового кристалла содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещённых в один корпус.
  • Смешанная микросхема — кроме полупроводникового кристалла содержит тонкоплёночные (толстоплёночные) пассивные элементы, размещённые на поверхности кристалла.

Вид обрабатываемого сигнала

Аналоговые микросхемы — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.

Цифровые микросхемы — входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем типа ТТЛ при напряжении питания +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон 2,4…5 В — логической единице; а для микросхем ЭСЛ-логики при напряжении питания −5,2 В диапазон −0,8…−1,03 В — логической единице, а −1,6…−1,75 В — логическому нулю.

Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов.

Технологии изготовления

Типы логики

Основным элементом аналоговых микросхем являются транзисторы (биполярные или полевые). Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Поэтому нередко в описании микросхемы указывают технологию изготовления, чтобы подчеркнуть тем самым общую характеристику свойств и возможностей микросхемы. В современных технологиях объединяют технологии биполярных и полевых транзисторов, чтобы добиться улучшения характеристик микросхем.

  • Микросхемы на униполярных (полевых) транзисторах — самые экономичные (по потреблению тока):
    • МОП-логика (металл-оксид-полупроводник логика) — микросхемы формируются из полевых транзисторов n-МОП или p-МОП типа;
    • КМОП-логика (комплементарная МОП-логика) — каждый логический элемент микросхемы состоит из пары взаимодополняющих (комплементарных) полевых транзисторов (n-МОП и p-МОП). Существует также смешанная технология BiCMOS.
  • Микросхемы на биполярных транзисторах:
    • РТЛ — резисторно-транзисторная логика (устаревшая, заменена на ТТЛ);
    • ДТЛ — диодно-транзисторная логика (устаревшая, заменена на ТТЛ);
    • ТТЛ — транзисторно-транзисторная логика — микросхемы сделаны из биполярных транзисторов с многоэмиттерными транзисторами на входе;
    • ТТЛШ — транзисторно-транзисторная логика с диодами Шоттки — усовершенствованная ТТЛ, в которой используются биполярные транзисторы с эффектом Шоттки;
    • ЭСЛ — эмиттерно-связанная логика — на биполярных транзисторах, режим работы которых подобран так, чтобы они не входили в режим насыщения, — что существенно повышает быстродействие;
    • ИИЛ — интегрально-инжекционная логика.

КМОП и ТТЛ (ТТЛШ) технологии являются наиболее распространёнными логиками микросхем. Где необходимо экономить потребление тока, применяют КМОП-технологию, где важнее скорость и не требуется экономия потребляемой мощности применяют ТТЛ-технологию. Слабым местом КМОП-микросхем является уязвимость к статическому электричеству — достаточно коснуться рукой вывода микросхемы и её целостность уже не гарантируется. С развитием технологий ТТЛ и КМОП микросхемы по параметрам сближаются и, как следствие, например, серия микросхем 1564 — сделана по технологии КМОП, а функциональность и размещение в корпусе как у ТТЛ технологии.

Микросхемы, изготовленные по ЭСЛ-технологии, являются самыми быстрыми, но и наиболее энергопотребляющими, и применялись при производстве вычислительной техники в тех случаях, когда важнейшим параметром была скорость вычисления. В СССР самые производительные ЭВМ типа ЕС106х изготавливались на ЭСЛ-микросхемах. Сейчас эта технология используется редко.

Технологический процесс

При изготовлении микросхем используется метод фотолитографии (проекционной, контактной и др.), при этом схему формируют на подложке (обычно из кремния), полученной путём резки алмазными дисками монокристаллов кремния на тонкие пластины. Ввиду малости линейных размеров элементов микросхем, от использования видимого света и даже ближнего ультрафиолета при засветке отказались.

В качестве характеристики технологического процесса производства микросхем указывают минимальные контролируемые размеры топологии фотоповторителя (контактные окна в оксиде кремния, ширина затворов в транзисторах и т. д.) и, как следствие, размеры транзисторов (и других элементов) на кристалле. Этот параметр, однако, находится во взаимозависимости с рядом других производственных возможностей: чистотой получаемого кремния, характеристиками инжекторов, методами фотолитографии, методами вытравливания и напыления.

В 1970-х годах минимальный контролируемый размер составлял 2-8 мкм, в 1980-х он был уменьшен до 0,5-2 мкм. Некоторые экспериментальные образцы фотолитографического оборудования рентгеновского диапазона обеспечивали минимальный размер 0,18 мкм.

В 1990-х годах, из-за нового витка «войны платформ», стали внедряться в производство и быстро совершенствоваться экспериментальные методы: в начале 1990-х процессоры (например, ранние Pentium и Pentium Pro) изготавливали по технологии 0,5-0,6 мкм (500—600 нм), потом технология дошла до 250—350 нм. Следующие процессоры (Pentium II, K6-2+, Athlon) уже делали по технологии 180 нм. В конце 1990-х фирма Texas Instruments создала ультрафиолетовую технологию с минимальным контролируемым размером около 80 нм.

Следующие процессоры делали по УФ-технологии 45 нм (сперва это был Core 2 Duo). Другие микросхемы достигли и превзошли этот уровень (в частности, видеопроцессоры и флеш-память фирмы Samsung — 40 нм). В 2010 году в розничной продаже появились процессоры, разработанные по 32-нм тех. процессу.[3][4] В апреле 2012 года в продажу поступили процессоры, разработанные по 22-нм тех. процессу (ими стали процессоры фирмы Intel, выполненные по архитектуре Ivy Bridge).[источник?] Процессоры с технологией 14 нм планируется к внедрению в 2014 году, а 10 нм — около 2018 года.[источник?]

Контроль качества

Для контроля качества интегральных микросхем широко применяют так называемые тестовые структуры.

Назначение

Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом — вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Аналоговые схемы

Цифровые схемы

Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

  • Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» — что соответствует сигналу высокого уровня (1), либо «закрыт» — (0), в первом случае на транзисторе нет падения напряжения, во втором — через него не идёт ток. В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (резистивном) состоянии.
  • Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка возможна при таких помехах, когда высокий уровень воспринимается как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов, позволяющих исправлять ошибки.
  • Большое отличие сигналов высокого и низкого уровня и достаточно широкий интервал их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора и настройки цифровых устройств.

Аналогово-цифровые схемы

Серии микросхем

Аналоговые и цифровые микросхемы выпускаются сериями. Серия — это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

Корпуса микросхем

Микросхемы выпускаются в двух конструктивных вариантах — корпусном и бескорпусном.

Корпус микросхемы — это несущая система и часть конструкции, предназначенная для защиты от внешних воздействий и для электрического соединения с внешними цепями посредством выводов. Корпуса стандартизованы для упрощения технологии изготовления готовых изделий.

Бескорпусная микросхема — это полупроводниковый кристалл, предназначенный для монтажа в гибридную микросхему или микросборку (возможен непосредственный монтаж на печатную плату).

Специфические названия микросхем

Фирма Intel первой изготовила микросхему, которая выполняла функции микропроцессора (англ. microproccessor) — Intel 4004. На базе усовершенствованных микропроцессоров 8088 и 8086 фирма IBM выпустила свои известные персональные компьютеры).

Микропроцессор формирует ядро вычислительной машины, дополнительные функции, типа связи с периферией выполнялись с помощью специально разработанных наборов микросхем (чипсет). Для первых ЭВМ число микросхем в наборах исчислялось десятками и сотнями, в современных системах это набор из одной-двух-трёх микросхем. В последнее время наблюдаются тенденции постепенного переноса функций чипсета (контроллер памяти, контроллер шины PCI Express) в процессор.

Микропроцессоры со встроенными ОЗУ и ПЗУ, контроллерами памяти и ввода-вывода, а также другими дополнительными функциями называют микроконтроллерами.

Правовая защита

Законодательство России предоставляет правовую охрану топологиям интегральных микросхем. Топологией интегральной микросхемы является зафиксированное на материальном носителе пространственно-геометрическое расположение совокупности элементов интегральной микросхемы и связей между ними (ст. 1448 ГК РФ).

Автору топологии интегральной микросхемы принадлежат следующие интеллектуальные права: 1) исключительное право; 2) право авторства.

Автору топологии интегральной микросхемы принадлежат также другие права, в том числе право на вознаграждение за использование служебной топологии.

Исключительное право на топологию действует в течение десяти лет. Правообладатель в течение этого срока может по своему желанию зарегистрировать топологию в Федеральной службе по интеллектуальной собственности, патентам и товарным знакам.[5]

Интересные факты

В мае 2011 фирмой Altera была выпущена, по 28 нм техпроцессу, самая большая в мире микросхема, состоящая из 3,9 млрд транзисторов.[6]

См. также

Литература

  • Жан М. Рабаи, Ананта Чандракасан, Боривож Николич. Цифровые интегральные схемы. Методология проектирования = Digital Integrated Circuits. — 2-е изд. — М.: Вильямс, 2007. — 912 с. — ISBN 0-13-090996-3

Источники

  1. Охраняется гл. 74 «Право на топологии интегральных микросхем» ГК РФ как интеллектуальная собственность (ст. 1225 «Охраняемые результаты интеллектуальной деятельности и средства индивидуализации»).

Примечания

  1. Технология изготовления микросхем // 1. Общие сведения о микросхемах и технологии их изготовления.. Архивировано из первоисточника 10 февраля 2012. Проверено 11 октября 2010.
  2. Создание первой отечественной микросхемы.
  3. Intel® Core™ i7-980X Processor Extreme Edition (12M Cache, 3.33 GHz, 6.40 GT/s Intel® QPI)with SPEC Code(s)SLBUZ
  4. Шестиядерный процессор Intel Core i7-980X Extreme Edition дебютировал официально — Ferra.ru
  5. ПРАВО НА ТОПОЛОГИИ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
  6. Корпорация Altera установила новый отраслевой рекорд - Программируемая вентильная матрица Stratix V

Tags: Интегральная микросхема технология изготовления, интегральная микросхема рисунок, интегральная микросхема харьков, интегральная микросхема и, интегральная микросхема степень интеграции.